
MAE 3780 Mechatronics
Final Report

Dongze Yue (dy85)
Jiahao Zhang(jz522)
Jiawen Fang(jf442)

September 13, 2016

1 Introduction

This report is a full documentation of the sumobot design, manufacturing and performance
for the final project MAE 3780 Mechatronics by group Bin Number 21. The aim of the project is
to design and build an 8’by 8’ robot that will actively engage the opponents robot and push it out
of the 3ft diameter arena in 3 minutes or less. Our robot ranked No.5 pre-competition and thus
entered the second round directly. In the following rounds we had 2 wins and 2 losses and was
eliminated before the 7th round.

2 Design Breakdown

2.1 Overall Mechanical Design

Figure 1: Robot Final Rendering

Mechanics The robot has 4-wheel drive. Its active element is a slapper held by two mousetraps
mounted in the front. The trigger for the slapper is a bent shaft on the servo motor attached to
the robot skin. The slapper is manually reset by bending it 180 degree and then blocked with the
bent shaft. It’s released when the shaft moves away. There are 3 QTIs at the bottom of the robot:
2 flanks the front and 1 at the center. Two plat steel plate are customized to extend the body
downward to accommodate all four servo motors. Two H-bridges, soldered to 2 separate perfboards
are hot-glued to the bottom of the chassis. The 9V and 6V batteries are placed right on top the
chassis. The Arduino and the breadboard are placed on the top layer for easy wiring. On the back
of the robot we placed a curved steel plate to prevent the robot from tipping over when tackled by
flippers.

2.2 Algorithmic Description

There are 5 states in our Algorithm: Initial, search, engage, trigger and stop.
Initial state, as the name suggests, activates all the elements in the robot and offers a 2 seconds

break for the robot to get into his role.
Search state is automatically entered after initial state. In this state,our robot is programed

to rotate in clock-wise motion until target is found within pre-set distance.
Engage state is entered when the distance detected by the sensor is below pre-set value. In

this state, the robot will stop its rotation and move straight forward to approach the target. There
is also a ”correction” sub-state under engage state. When target is lost in engage state, first the
robot will turn to left and right up to 40 degrees twice to relocate the target and improve the

1

route.However if target is not found after the two turns, the robot will re-enter search state.

Listing 1: Searching Method

/∗
∗The search ing method has a g l o b a l va r i a b l e , d i r t ha t dec ide s the d i r e c t i on
∗ o f r o t a t i on o f the search .
∗The robot keeps r o t a t i n g and g e t t i n g va lue from ∗ the sonar us ing getSonar () method
∗ un t i l the d i s t ance i s c l o s e enough .
∗Once the search ing i s done the robot goes out o f the loop ,
∗ o therwi se i t s t ay s in the loop f o r e v e r u n t i l t a r g e t found .
∗/
int Search (void){

i f (! d i r){
MotorAction (RIGHT) ;
} else {
MotorAction (LEFT) ;
}
i n i t Sona r () ;
while (getSonar () > DIST FIND) {
RobotTurn (1 , 5) ; //The robot turns f o r 5 degrees .
}

}

Trigger state is active when the detected distance is under a smaller preset value and the
servo that previously pinned the extended arm will let go and the mousetrap will fire out.

Stop state is when the center QTI is triggered. In this state all motion will stop and the red
LED light up.

Figure 2: Algorithm Breakdown

2.3 Schematic Description

H-Bridge is designed with ”step down resistors” to protect the motor circuit: when Arduino is
reset every time, the pins go back to low and turn on the BJT. This makes sure the motor H-bridge
won’t be shorted.

2

Our MOSFETs were selected incorrectly. Their threshold voltage range 2-4V and reach peak
performance at 10V, which is not achievable through Arduino output, posing challenge to the H-
bridge design. We attempted to connect the Arduino and our batteries in series to supply a 11V
power on our motors. Although such setup offers high speed and torque on the wheels, it causes the
malfunction of our sonar because of the huge current the motor draws from not only the batteries
but the Arduino board as well.

Figure 3: H-Bridge

In order to achieve ideal turn on voltage of the MOSFET
of 10V, we drew an additional wire from the positive terminal
of the 9V battery which supplies power to the Arduino board
to the H-bridge. We used the Arduino pins to toggle the 9
volts supplied by the battery and then utilized the 9 volts to
turn on the MOSFETs. However, the lab only provided us with
free NPN BJTs, so it’s only possible to build a pull down net-
work using additional resistor. We attempted to to build a pull
up network with the same configuration by moving the resistor
to the emitter side of the BJT, but the circuit didn’t work as
expected - the voltage on Vout was extremely low and is insuf-
ficient to drive the MOSFETs. Later we adapted the pull down
network and identified another problem - wiring the network
directly onto Arduino pins causes the H-bridge to short circuit
every time Arduino resets for whenever Arduino resets, all the
pins are on low, which turns on the BJTs and therefore turns
on all the MOSFETS, generating a large short circuit current.

In order to solve this problem, we added an additional pull
down network on top of the original network. By doing so we
obtain a pull up network by doubling the negation. We chose MOSFETs over BJTs for the sec-
ond pull down network because we believed that this will reduce current draw on Arduino pins,
increasing the board efficiency.

Figure 4: Motor Drive Logic

Motor Drive Logic The truth table and logic equations above explain the motor drive logic. In
our plan, the logic was to be implemented by circuit above, which was later replaced by micropro-
cessor program due to time constraint. The function input three parameters: ”mov”,”turn”,”pos”
which indicate if the robot move/not move, turn left/right, go forward/backward(or turn clockwise/anti-

3

clockwise). It then output P0 and P1 values which will specify the actual direction of motor rotation
through H-bridge.

3 Design Motivation

Mechanical Design Our mechanical design went through a major change of attacking mecha-
nism before the actual construction from mousetrap lifter to mousetrap slapper. The original plan
was to upgrade the winning design from year 2014 by re-using the servo that triggers the attack to
lift up the extended arms on the mousetraps and thus tilt up the opponent trapped in between the
arms. This way we lessen the traction and limit the mobility of the opponent and increase traction
to our robot by adding the extra weight from the opponent robot. However after observing the
flat shovel design adopted by several groups we realized that the biggest challenge is to avoid the
shovel instead of to initiate a shovel match.so instead we placed the mousetrap and the extended
arm in the front of our robot and the it will be trigger when the distance between two robots is
within preset value. This way, we utilize the moment provided by long arm and big momentum
to avoid running into the opponent face to face so that we increase our chance of blindsiding the
opponent as our robot is programmed to have a quicker reaction after the slap.

Electrical Design One of our major electrical designs was to provide maximum power to the
motor. For maximum efficiency, we compared the performances of a MOSFET H-bridge and a BJT
H-bridge, both powered by 6V batteries, with the components available and we soon discovered
that using the BJT H-bridge model that we adapted in the lab sessions will eventually limit the
amount of current flowing down the H-bridge. The motor were weak and rotating slowly. In
order to get larger current from the battery, we decided to use MOSFET to control the H-bridge.
Besides reducing current loss, we also experimented to increase the voltage supply to the motor to
achieve higher torque. However, regarding the risk of damaging the motor, we didn’t go far on this
approach.

Another important feature that we implemented was to minimize the current loss of the Arduino
board, because we thought that drawing too much current from the board will cause the system
unstable and glitch the sonar. Therefore, we added two extra MOSFET, Q5 and Q8 on the diagram,
to minimize current, because MOSFET will not draw significant current from the gate.

C Program Design Besides the main() function that initializes the program and the while(1)
loop and regulates the robot, we wrote 5 additional files containing useful methods and 1 header
class containing all the numerical constants and Finite State Machine state information. Within
the while(1) loop of the main function, we only call the fsm() function every cycle and we regulate
the behavior of the robot in each distinct state of the FSM. This design is to ensure that the robot
correctly functions as what we designed to and brings a hint of simplicity. We used the header class
to contain all the global constants to easily debug and calibrate our system.

4 Strengths and weaknesses

4.1 Strengths

Power and Servo Control: Our H-bridge design ensures that maximum possible power is de-
livered to the servo motors to drive the robot robustly and actively engage the opponents. Fur-

4

thermore, the simple and effective logic expressions of P0, P1, P2 and P3 on H-bridges enable the
system to respond even faster.
Active Slapper: There are two main purposes of the slaper attack: first to dodge the opponent’s
active element and second to increase our chance to blindside the other robot. Our design was
greatly different than the majority of other robots and we hoped to take them by surprise.

4.2 Weaknesses

Insufficient Sonars: two sonars were supplied but we only implemented one due to the time
constraint. This decreases the accuracy of our searching mechanism and it’s likely we’ll lose track
of short targets and targets with decoys.
Poor Wiring: Our wires were long and disorganized, all connected to one proto-board and then
directly to the Arduino pins.There’s no insurance to keep the wires connected in place either besides
a few drops of hot glue. It would takes us longer to realize or locate circuit failures if the wires got
loose or fell out.

5 Performance in Competition

In the 2nd round we competed with bin 24. Our robot was faster to locate the opponent
and drove it out swiftly.

In the 3rd round we competed with bin 4. Two robots engaged with each other at roughly the
same time and the race evolved into a pushing battle. Our robot was eventually pushed out of the
arena because the rubber band on our left back wheel fell off and got stuck onto the motor shaft.

In the 5th round we competed with bin 34. Our robot was significantly faster at locating the
opponent and it drove out the opponent right after they engaged with each other.

In the 6th round we competed with bin 33. The opponent pushed us out of the arena from
our back. We missed the target in our first attempt to search because the sensor wasn’t turned on.
Our guess is our wires either got loose or dropped out.

6 Statement of work

Jiahao Zhang

Designed, CAD and constructed the robot. Implemented the initial FSM and overall algo-
rithm (capable of performing milestone#3 and milestone#4), which was later further optimized for
competition.

Dongze Yue

In charge of the overall electrical design. Designed, soldered and configured power manage-
ment and H-bridge of the robot.Collected the code written by the teammates and integrated them
into one file. Straightened out the methods and added the header file to make the program more
clear and comprehensive. Re-factored our original design of the Finite State Machine and wrote a
sequential switch-case branch logic to actively change the state of the FSM against the change of
input.

Jiawen Fang

Assisted in mechanical design and construction, electrical and coding trouble shooting. Man-
aged the schedule, budget and purchase plan. Kept the morale up and ordered midnight pizza.

5

7 Future Work

All the designs below were actually realised by our code, but they weren’t installed onto the robot
due to time constraints.

Speed Measurement In the process of designing the Finite State Machine, we developed a
possible scenario that our robot gets trapped on the enemy’s large shovel (or plate) that although
our motor tries to move, we are actually pushed by the enemy. Therefore, we decide to implement
a speed measuring system that monitors the speed of rotation of a wheel real time and warns the
controller if the robot stops moving while the motor is still on.
In order to measure the speed, we originally thought that we can add a accelerometer on board
and use the acceleration information to calculate whether the robot is moving or not. However, a
typical accelerometer will cost a large portion of our budget and it has a lot of extra features that
we won’t use, therefore we decided to look for other solutions.
The second approach we took was to look for a tachometer that measures the speed into voltage.
We soon found this very hard to work with, because the voltage provided by tachometer is noisy
and tiny, which requires a complicated filter to process. More importantly, voltage level is an analog
feature instead of digital. It will be complex to code the Arduino to detect the voltage.
Finally we had an inspiration on an old LEGO robot servo model that gives an digital feedback on
the current motor speed. We nobly sacrificed the servo by forcibly opening the seal and breaking
the gears. Instead of using a traditional tachometer, the LEGO model uses an ”optical” tachometer,
which connects a partly-hollow gear to the servo and used an optical sensor to detect if there were
any blockade (the un-hollow part of the gear) in front of it. As the gear starts rotating at a given
speed, the optical sensor detects the presense of the blockade in a unique frequency. The frequency
will be inversely-proportional to the actual speed of the rotation. Therefore, regarding the LEGO
design, we used a QTI sensor right next to the wheel, and sticked black-and-white stripes around
the wheel. Once the wheel starts rotating, the QTI sensor will frequently detect the white and
black parts changing. Therefore we can include speed as a factor in the calculation.

Memory and Coordinate System We also planned to store each movement that the robot
made into a size 100 array in the Arduino. Then we will know how far we travelled and where we
are in the circle, if we correctly calibrated the system. For each move that the program calls the
MotorAction() method, the array updates to record the movement. Then the robot can perform a
GoBack() method to rewind all the movements and go out of trouble if it encounters enemy. Also,
we can create a coordinate system within the robot if we also input the sonar information into it:
we will know where the enemy are, the speed of the enemy, and the route the enemy is walking on.

8 Conclusion

In this report we presented the thoughts and highlights in the design and construction process
of our sumobot. Reflect upon our work and the competition result, it’s obvious that with limited
time to finish the project, it is crucial to balance the efforts put into mechanical, electrical and
coding elements of the robot. Through this project, we definitely gained better understanding of
the course and the field of Mechatronics. Futher details on the cost and the complete code could
be found in the appendix.

6

9 Appendix

Cost Table

Name Quantity Source Price

Wheel 2 DigiKey 4.26*2=8.52

MOSFET I 4 DigiKey 1.48*4=4.92

MOSFET II 8 DigiKey 0.93*8=7.44

Motor 2 Lab 3*2=6

Mousetrap 2 McMaster 0.85*2=1.7

Scrap steel 1 ib Mechine Shop 16*0.2=3.2

Total Cost: 31.78 dollars

Commented Code Here is the fully commented code.
Before introducing the implemented methods, it is important to start with the header file first,

as it includes crucial state and constant information for the whole program.

Listing 2: constants.h

#ifndef CONSTANTS H
#define CONSTANTS H

// motor s t a t e s
#de f i n e FORWARD 1
#de f i n e BACKWARD 2
#de f i n e LEFT 3
#de f i n e RIGHT 4
#de f i n e OFF 0
// fsm s t a t e s
#de f i n e INIT 0
#de f i n e SEARCH 1
#de f i n e ENGAGE 2
#de f i n e TRIGGER 3
// u s e f u l cons tant s
#de f i n e SONARFACTOR 0.0256 //numerical mu l t i p l i e r t ha t g i v e s
// the sonar measured d i s t ance in inches
#de f i n e DIST TRIGGER 8 // t r i g g e r d i s t ance 8 inches
#de f i n e SONARDELAY 40000 // sonar de l ay s 40ms everyt ime the system c a l l s
#de f i n e DIST FIND 20 // t a r g e t r e cogn i t i on d i s t ance 20 inches
#de f i n e SPEED FACTOR 100000 // normal ize the speed
#de f i n e MAX WAIT TIME 1000 // speed measurement time−out i n t e r v a l
#de f i n e TURNFACTOR 7.5 // time mu l t i p l i e r in the wh i l e loop when the robot turns
#de f i n e NORMAL SPEED 20 // normal speed o f the robot

#endif

The first file, Main.c, contains the crucial method of the Finite State Machine, fsm(). It is
called every cycle in the main function to function properly.

Listing 3: Finite State Machine switch, fsm()

int STATE = INIT ; // STATE i s a g l o b a l r e g i s t e r t ha t s t o r e s the current s t a t e .
void fsm (void){ // t h i s shou ld be i n f i n i t e l y looped

/∗
∗ s t a t e breakdown :
∗ i n i t i a l s t a t e : ha l t , nothing , j u s t i n i t i a l i z i n g
∗− go to search ing s t a t e a f t e r i n i t i a l i z a t i o n
∗ search ing s t a t e : search u n t i l t a r g e t found
∗− when t a r g e t found , go to engage s t a t e ;
∗ engage s t a t e : go to the targe t , w i l l c a l l ∗Correc t ionLe f t&Right to ad ju s t i t s rou te s

7

∗− branch 1 : i f reach t a r g e t c l o s e wi th in ce r t a in ∗ dis tance , go to a c t i v e element
∗ t r i g g e r s t a t e
∗− branch 2 : i f cannot f i nd targe t , go to ∗ search ing s t a t e
∗ a c t i v e element t r i g g e r s t a t e : r e l e a s e t r i g g e r , ∗push enemy
∗− go to engage s t a t e
∗/
// each s t a t e method c a l l e d below i s implemented in fsm . c .
// such method not only execu te s what to be done in t ha t s t a t e ,
// i t a l s o re turns the va lue o f the next s t a t e the system shou ld go to .
switch (STATE){
case INIT :

STATE = i n i t 0 (STATE) ;
break ;

case SEARCH:
STATE = sea r ch 0 (STATE) ;
break ;

case ENGAGE:
STATE = engage 0 (STATE) ;
break ;

case TRIGGER:
STATE = t r i g g e r 0 (STATE) ;
break ;

default :
STATE = INIT ;
break ;

}
}

Listing 4: Main Function, main()

int main (void) {

DDRB |= 0b00110111 ; // Se t t i n g por t s as output , PB0˜2 & PB4 are P0 and P1 por t s f o r
// the H−b r i dge . PB5 i s the debug LED.
DDRD |= 0b00000010 ; // PD1 i s another debug LED.
DDRC |= 0b00000011 ; // PC0 con t r o l s the t r i g g e r servo ,
// as PC1 i s the LED tha t i n d i c a t e s out o f c i r c l e .
PORTC &= ˜(1<<0);
EICRA |= (1<<2) |1; // In t e r rup t s e t t i n g s
EIMSK |= (1<<1) |1;
PCMSK2 |= (1<<PCINT20) ;
PCICR |= (1<<PCIE2) ;
s e i () ; // enab le i n t e r r up t

while (1){ // loop
fsm () ;
}

}

The second file, fsm.c, contains all the useful methods of searching the target and the state
functions that executes certain actions and returns the next state.

Listing 5: Directional Correction Methods

/∗
∗Before going in to complete search , the robot c a l l s co r r e c t i on methods
∗ in engage s t a t e to b r i e f l y ad ju s t the pos i t i on , t r y i n g to
∗ f i nd the t a r g e t .
∗/
volat i le int d i r = 0 ; // 0 fo r r i gh t , 1 f o r l e f t
// g l o b a l i nd i c a t o r f o r d i r e c t i on used by search () method .

// s e t t e r s f o r the d i r e c t i on v a r i a b l e .
void s e tL e f t (void){

8

d i r = 1 ;
}

void se tRight (void){
d i r = 0 ;

}

// cor rec t i on methods
int Correct ionRight (void){
MotorAction (RIGHT) ; // turns c l o ckw i s e
i n i t Sona r () ; // i n i t i a l i z e s the sonar
int counter = 0 ; // i n i t i a l i z e s the counter
while (counter < 10){ // s t ay s in the loop u n t i l the counter reaches 10

i f (getSonar () < DIST FIND) {
return 1 ; // i f the sonar f i n d s the t a r g e t again , re turn True .

}
counter ++;

}
return 0 ; // i f f a i l s , re turn f a l s e
}

int Cor r e c t i onLe f t (void){
MotorAction (LEFT) ; // the robot r o t a t e s counter−c l o ckw i s e .
i n i t Sona r () ;
int counter = 0 ;
while (counter < 10){

i f (getSonar () < DIST FIND) {
return 1 ;

}
counter ++;

}
return 0 ;

}

Listing 6: FSM State Methods

int i n i t 0 (int s t a t e){
/∗
∗ i n i t i a l i z a t i o n s t a t e
∗ d i r e c t l y goes in to search ing s t a t e at the next c y c l e
∗/

return SEARCH;
}

int s ea r ch 0 (int s t a t e){
/∗
∗ search ing s t a t e
∗ c a l l s search method and goes to engage s t a t e when done
∗ at the end o f the s ta t e , the robot shou ld face at the opponent
∗/

Search () ; // c a l l s the search method
return ENGAGE;

}

int engage 0 (int s t a t e){
/∗
∗ engage s t a t e
∗ walks up to opponent
∗ i f l o s e ta rge t , c a l l c o r r e c t i on methods
∗ i f c o r r ec t i on f a i l s , go to search ing s t a t e
∗ i f t a r g e t i s very c lose , go to t r i g g e r s t a t e
∗/

MotorAction (FORWARD) ; // moves forward
i n i t Sona r () ;

9

i f (getSonar () > DIST FIND) {
int s t a t ; // s t a t i s a Boolean va lue determining whether the co r r ec t i on succeeded .
i f (! d i r) { // using the current d i r e c t i on pre f e rence
s t a t = Cor r e c t i onLe f t () ;
} else {

s t a t = Correct ionRight () ;
}
i f (! s t a t) {return SEARCH;} // i f co r r e c t i on f a i l s , go to search s t a t e

}
i f ((getSonar () < DIST TRIGGER)) { // i f t a r g e t i s very c lose , go to t r i g g e r s t a t e

return TRIGGER;
}
return ENGAGE; // s t ay s in engage s t a t e i f nothing happens

}

int t r i g g e r 0 (int s t a t e){
/∗
∗ t r i g g e r s t a t e
∗ r e l e a s e the t r i g g e r , and go back to engage s t a t e
∗ t h i s s t a t e only g e t s a c t i v a t e d one time
∗/
PORTC |= (1<<PC0) ; // turn on the t r i g g e r servo f o r 500ms
delay ms (5 0 0) ;

PORTC &= ˜(1<<PC0) ;
s e tL e f t () ; // d i r e c t i on pre f e rence on the l e f t s ide ,
// s ince the t r i g g e r s l a p s the enemy to the l e f t
return ENGAGE; // go back to engage s t a t e

}

The third file, Motor.c, contains important methods of motor movement, including the logical
expression of P0 P3.

Listing 7: Motor Movement Methods

volat i le int ac t i on = OFF; // g l o b a l v a r i a b l e s t o r i n g the current ac t ion o f the motor

int getAct ion (void) { // g e t t e r o f ac t ion
return ac t i on ;

}

/∗
∗ The MotorAction () method i s implemented twice below , tak ing two d i f f e r e n t input :
∗ 1 . The input o f t h ree i n t e g e r s i n d i c a t i n g movement , turn ing and d i r e c t i on .
∗ 2 . The input o f a constant s t a t e de f ined in the header
∗/

void MotorAction (int mov , int turn , int p o s i t i v e){
// ass i gn l o g i c a l e xpre s s i ons to P0˜P3
int p0 = mov & ˜ po s i t i v e ;
int p1 = mov & po s i t i v e ;
int p2 = mov & ˜(p o s i t i v e ˆ turn) ;
int p3 = mov & (p o s i t i v e ˆ turn) ;
// ass i gn P0˜P3 to PORTB
PORTB = (PINB & (0 b11101000)) | ((p0<<PB0) | (p1<<PB1) | (p2<<PB2) | (p3<<PB4)) ;
// save current ac t ion
ac t i on = FORWARD∗(mov & ˜ turn & po s i t i v e) + BACKWARD∗(mov & ˜ turn & ˜ p o s i t i v e)
+ LEFT∗(mov & turn & ˜ po s i t i v e) + RIGHT∗(mov & turn & po s i t i v e) ;

}

void MotorAction (int act){
ac t i on = act ;
i f (act == FORWARD) {
PORTB |= (1<<5);
PORTB &= (˜(1<<PB0)) ; // forward
PORTB |= (1<<PB1) ;

10

PORTB &= (˜(1<<PB2)) ;
PORTB |= (1<<PB4) ;

} else i f (act == BACKWARD) {
PORTB &= ˜(1<<5);
PORTB |= (1<<PB0) ; // backward
PORTB &= (˜(1<<PB1)) ;
PORTB |= (1<<PB2) ;
PORTB &= (˜(1<<PB4)) ;

} else i f (act == LEFT) {
PORTB |= (1<<PB0) ; // counter−c l o ckw i s e
PORTB &= (˜(1<<PB1)) ;
PORTB &= (˜(1<<PB2)) ;
PORTB |= (1<<PB4) ;

} else i f (act == RIGHT) {
PORTB &= (˜(1<<PB0)) ; // c l ockw i s e
PORTB |= (1<<PB1) ;
PORTB |= (1<<PB2) ;
PORTB &= (˜(1<<PB4)) ;

} else i f (act == OFF){
PORTB &= (˜(1<<PB0)) ; // s top
PORTB &= (˜(1<<PB1)) ;
PORTB &= (˜(1<<PB2)) ;
PORTB &= (˜(1<<PB4)) ;

}
}

// The RobotTurn () method take s in a c a l i b r a t e d f a c t o r and turns the robot at a g iven ang le .
void RobotTurn (int po s i t i v e , double ang le){

double t = ang le ∗ TURNFACTOR;
MotorAction (1 , 1 , p o s i t i v e) ;
for (int i = 0 ; i < t ; i++){

delay ms (1) ;
}

}

The fourth file, QTI.c, implements the interrupt method that handles the situation when the
robot reaches the while circle at the edge of the arena.

Listing 8: QTI Interrupt Methods

// Le f t QTI
ISR(INT1 vect)
{

se tRight () ;
i f ((PIND >> 3) & 1) { // on co l o r b lack , pin high
} else { // on co l o r white , pin low

while (! ((PIND >> 3) & 1)){ // wh i l e on co l o r whi te
MotorAction (RIGHT) ; // turn r i g h t
i f (! ((PIND >> 2) & 1)) { // i f both QTI on white , perform emergency back ing

MotorAction (BACKWARD) ;
de lay ms (1200) ;

}
}

}
}

// Right QTI
ISR(INT0 vect)
{

s e tL e f t () ;
i f ((PIND >> 2) & 1) {
} else {

PORTB &= ˜(1<<5); // on white , pin low
while (! ((PIND >> 2) & 1)){

11

MotorAction (LEFT) ; // turn l e f t
i f (! ((PIND >> 3) & 1)) { // i f both QTI on white , perform emergency back ing

MotorAction (BACKWARD) ;
de lay ms (1200) ;

}
}

}
}

// Center QTI
ISR(PCINT2 vect){

i f (! ((PIND >> 4) & 1)){ // on white , pin low
while (1){ // k i l l a l l the movement and s t ay s in the loop f o r e v e r

MotorAction (OFF) ;
PORTC |= (1<<PC1) ;
PORTC &= ˜(1<<PC0) ;

}
}

}

The fifth file, Sonar.c, contains all the methods to utilize the sonar to get the distance between
the robot and enemy.

Listing 9: Sonar Methods

// s e t sonar on PB3 − PCINT3
// i f we want to ge t the d is tance , s imply use getSonar ()
// t h i s re turns an in t as d i s t ance propor t i ona l to the re turn ing pu l s e l eng t h .

volat i le unsigned int f l a g = 0 ; // g l o b a l i n t e r r up t f l a g

void i n i t Sona r (void)
{

PCICR |= (1 << 0) ; // enab le i n t e r r up t f o r PCINT7 . . . 0
s e i () ; // enab le g l o b a l i n t e r r up t
TCCR1B |= ((1 << 1) | (1 << 0)) ; // s e t t imer 1 ’ s p r e s c a l e r to 8

}

void startSonarMeasurement (void)
{

DDRB |= (1 << 3) ; // s e t data d i r e c t i on fo r PB3 as output
PORTB |= (1 << 3) ; // t o g g l e PB3 to high f o r 5 us
de l ay u s (5) ;

PORTB ˆ= (1 << 3) ; // s e t PB3 back to low , t h i s i s a t r i g g e r pu l s e
DDRB &= ˜(1<<3); // data d i r e c t i on fo r PB3 as input
PCMSK0 |= (1 << 3) ; // enab le PCINT3 in t e r r up t mask

}

void resetTimer (void) // r e s e t s the timer va lue to 0
{

unsigned char s r eg ;
s r eg = SREG;
c l i () ;
TCNT1 = 0 ;
SREG = sreg ;

}

unsigned int readTimer (void) // reads the current t imer va lue as an in t
{

unsigned char s r eg ;
unsigned int i ;
s r eg = SREG;
c l i () ;
i = TCNT1;

12

SREG = sreg ;
return i ;

}

ISR(PCINT0 vect)
{

i f ((PINB & (1<<3)) == 0b00001000) // i f PB3 i s h igh − i t s at r i s i n g edge
// r e s e t t imer and s t a r t counting , f l a g = 0
{

f l a g = 0 ;
resetTimer () ;

}
else
{

f l a g = 1 ; // i f PB3 i s low − at f a l l i n g edge : t o g g l e the f l a g .
PCMSK0 &= ˜(1<<3); // d i s a b l e i n t e r r up t

}
}

int getSonar (void)
{

volat i le unsigned int c = 0 ; // i n t e r na l v a r i a b l e f o r t imer
f l a g = 0 ; // s e t f l a g to 0
startSonarMeasurement () ; // s t a r t the t r i g g e r pu l s e
while (f l a g == 0) { // t h i s loop wai t s f o r the f l a g to t o g g l e
// wait f o r the re turn pu l s e to f i n i s h
}
c = SONARFACTOR∗ readTimer () ; // read the timer va lue to c once f i n i s h .
de l ay u s (SONARDELAY) ;

return c ;
}

The last part of the code, Speed.c, implements the function of measureing the current speed of
the robot using a QTI sensor. Although we did not put on the QTI during the competition due to
time constraints, we still made this part fully working.

Listing 10: Speed Measurement Methods

// s e t QTI on PC0 − PCINT8
// we wrote the f i l e b e f o r e implementing the t r i g g e r . s ince we didn ’ t use
// the speed measurement , we s e t the t r i g g e r servo to PC0 ins t ead in the compet i t ion .
// i f we want to ge t the speed , s imply use getSpeed ()
// t h i s re turns an in t p ropor t i ona l to the ro t a t i on speed o f the wheel .

volat i le unsigned int f l a g s = 0 ; // g l o b a l f l a g to measure time i n t e r v a l

void i n i tSpeed (void)
{

PCICR |= (1 << PCIE1) ; // enab le i n t e r r up t f o r PCINT14 . . . 8
s e i () ; // enab le g l o b a l i n t e r r up t
TCCR1B |= ((1 << CS12) | (1 << CS10)) ; // s e t t imer 1 ’ s p r e s c a l e r to 1024

}

void startSpeedMeasurement (void) {
DDRC &= ˜(1<<PC0) ; // data d i r e c t i on fo r PC0 as input
PCMSK1 |= (1 << PCINT8) ; // enab le i n t e r r up t mask

}

ISR(PCINT1 vect){
i f (PINC & 1) {

f l a g s = 0 ;
resetTimer () ; //on co l o r b lack , r e s e t t imer

} else {

13

f l a g s = 1 ; //on co l o r white , t o g g l e f l a g , count ing complete
PCMSK1 &= ˜(1 << PCINT8) ; // d i s a b l e i n t e r r up t

}
}

int getSpeed (void)
{

volat i le unsigned int c ;
startSpeedMeasurement () ;
int i = 0 ;
while (f l a g s == 0) { // t h i s loop wai t s f o r the f l a g to t o g g l e
// wait f o r the co l o r to change
i++;
de lay ms (1) ;

// i f the measurement exceeds maximum wai t ing time , re turn a speed o f 0 .
i f (i > MAX WAIT TIME) {return 0 ;}
}
c = SPEED FACTOR/readTimer () ; //c i s an in t p ropor t i ona l to speed
// t h e r e f o r e inve r s e p ropor t i ona l to t imer va lue
return c ;

}

// the f o l l ow i n g method checks whether the current speed i s lower than the expec ted speed .
int checkSpeed (void)
{

int spd = getSpeed () ;
i f (spd > NORMAL SPEED) {

return 1 ;
} else {

return 0 ;
}

}

14

